
Gears of Our Childhood: Constructionist Toolkits,
Robotics, and Physical Computing, Past and Future

 Paulo Blikstein
Stanford University

520 Galvez Mall
Stanford, CA, 94305

paulob@stanford.edu

ABSTRACT
Microcontroller-based toolkits and physical computing devices
have been used in educational settings for many years for robotics,
environmental sensing, scientific experimentation, and interactive
art. Based on a historical analysis of the development of these
devices, this study examines the design principles underlying the
several available platforms for physical computing and presents a
framework to analyze various platforms and their use in education.
Given the now widespread use of these devices among children and
their long history in the field, a historical review and analysis of
this technology would be useful for interaction designers.

Categories and Subject Descriptors
K.3.1 [Computers and Education]: Computers Uses in Education

General Terms
Design, Human Factors.

Keywords
Education, interaction design, physical computing, robotics,
constructionism.

1. INTRODUCTION
The presence of several types of physical computing and robotics
devices in educational settings is attributable to the many research
and design initiatives of the past thirty years. However, although
the design of such devices has evolved significantly and their
popularity has grown significantly, there is little research that
examines this technology from a usability standpoint or that takes
into account the history of the development of these platforms and
the theoretical underpinning that guided their design. This study
initiates a discussion on the design of physical computing platforms
for children, which is particularly important for the community of
researchers in interaction design for children, given the prevalence
of these devices in formal and informal education.
Since the late 1960s, researchers have shown that not all
programming languages are created equal [25] Logo has had a
significant impact in K-12 education because it was relatively easy
for the average child to learn and use, and it was created according
to carefully-crafted, theory-inspired design principles. Based on
these design principles, Papert and collaborators [25, 34] made a
strong case for why the BASIC programming language—then the
de facto standard in personal computers—was not a good design,

and why there was a need for special languages for children. They
argued that media matters; in other words, the particular properties
of the constructive building blocks offered to children limit or
enhance what they can build, create, and learn. In particular, they
made an important distinction between understanding the inner
workings of a technology and the content that we want children to
learn through the use of that technology. For example, Papert was
interested in Logo as a way for children to learn powerful ideas at
work in mathematics and computer science (i.e., differential
geometry, recursion, etc.) and not how the computer’s memory was
being managed by the operating system, or how the transistors were
wired inside the microprocessor. The histories of Logo and, more
recently, the Scratch programming environment show how such
design principles are crucial for a powerful and sustained
engagement by children with technological tools for learning that
continues beyond the novelty effect.
The development of programming languages for children soon
inspired the creation of programmable tangibles that would bring
programming to the physical world. These developments have
occurred in four waves or generations. The first generation of
tangible physical computing devices emerged in the 1980s and
early 1990s with the development of the LEGO/Logo platform and
the many generations of “programmable bricks” by researchers at
the MIT Media Lab. The second generation of devices was
developed in the late 1990s and extended the capabilities of these
early platforms by including new types of sensors, actuators, and
ways to interact with computers, as well as programmable boards
targeted to hobbyists and interaction designers. The third
generation of the devices was developed in the early years of the
21st century. This third wave sought not simply to extend the
capabilities of earlier platforms, but additionally placed a particular
emphasis on creating devices that would broaden participation in
computing and allow users to access new domains of knowledge.
Platforms developed during this period were specifically designed
to target new classes of users, such as very young children, non-
technical designers, and children in the developing world. Other
platforms used a modular approach to design as a way to open up
possibilities for exploring complex concepts in mathematics and
science.
The latter half of the first decade of the current millennium saw a
fourth generation of devices which brought new form factors, new
architectures, and new industrial design, embedding computational
capacity at the level of the components, enhancing the capabilities
of older platforms and further broadening the reach of physical
computing to new audiences.
A parallel, non-chronological categorization refers to design
commitments and principles. Here, I employ an analytical construct
that I call “selective exposure.” Depending on their theoretical or
pedagogical commitments, designers select aspects of the
technology they either want exposed to users or hidden from them.
Three main categories set apart the platforms produced over the last

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
IDC '13, June 24 - 27 2013, New York, IA, USA
Copyright 2013 ACM 978-1-4503-1918-8/13/06…$15.00.

173

Full Papers IDC 2013, New York, NY, USA

30 years. The first category has as its most popular device the Lego
Mindstorms brick, and was heavily inspired by the design of the
Cricket (thus “the Cricket model”). These devices kept most of the
inner working of microcontrollers hidden from users, and exposed
only their functionality (i.e., receive sensor values, and control
devices). The second category is comprised of devices that exposed
most of the specificities of the underlying electronics, and were
mostly based on the idea of a barebones “breakout board” for
microcontrollers (thus the “breakout model”). The BASIC Stamp,
Wiring, and the Arduino board are popular representatives of this
category. Finally, the third category is composed of devices that did
not need a computer to be programmed, and took the idea of
selective exposure even further—they enabled interaction at a
different level of abstraction, which broke the traditional paradigm
of programmable bricks. Topobo, Braitenberg Blocks, and
Cubelets—all programmable without computers—are among the
main devices that fall into that category.
In this study, I will first describe the four chronological waves of
devices, comment on their design principles and forms of
interaction, and, lastly, reflect upon the future of such devices, and
how they might move forward a progressive agenda in education.

2. The First Generation: LEGO/Logo,
Braitenberg Bricks, and Programmable
Bricks
Mitchel Resnick, Fred Martin and Stephen Ocko’s pioneering work
on LEGO/Logo began in the 1980s at the MIT Media Lab.
LEGO/Logo (see Figure 1) was a computer-based learning
platform that combined LEGO construction with the Logo
programming language. Children built machines out of traditional
LEGO pieces as well as new bricks designed specifically for the
Logo platform, which included gears, motors, and sensors. They
could then program their constructions. Much of this work was also
inspired by Martin’s work with robotics competitions at MIT,
which pioneered these types of competitions in engineering schools
[16]. At the time, LEGO/Logo represented a return to Logo’s roots.
Logo was used originally to program a robotic turtle, but the second
generation of Logo environments took advantage of the advent of
personal computing and shifted to screen turtles from the previous
mechanical version. Even so, LEGO/Logo brought the turtle back
off the screen [34]: the researchers’ characterization of
LEGO/Logo as a “throwback” [33] was an apt one.

Figure 1. The first MIT Programmable Brick
However, there were important differences between the two
platforms. With LEGO/Logo, children were not given ready-made
objects like turtles; they had to create their own objects using the
LEGO bricks, and were then able to use the Logo language to
control those creations. The team attributed the platform’s success
to the fact that it put children in control, offered multiple paths to

learning, and encouraged the building of a sense of community
when deployed in workshops. However, there were still some
important limitations, including the fact that LEGO/Logo creations
had to be tethered to personal computers in order for them to work.
This limitation was a considerable one, especially when children
wanted to create mobile creatures.
Limitations aside, the platform enabled children to learn powerful
ideas through design and about design [33], which Resnick’s team
believed to be missing from science education in schools. Even
though they took for granted that the traditional “instructivist”
approach was flawed, they criticized the existing hands-on
activities in schools because children were still compelled to work
on someone else’s experiments. LEGO/Logo represented a new
approach rooted in Papert’s constructionist theories, bringing
design and invention activities to the classroom, because children
learn best when they were “actively involved in creating and
constructing meaningful products” [34]. In the process, students
would learn about mathematical and scientific ideas and about the
design process itself—an idea which, incidentally, came back to
popularity with the “Maker” movement. However, the ideas behind
the Maker movement have been incorporated into constructionist
theories and implementations for at least 20 years.
LEGO/Logo was later released as a commercial product through
the LEGO Group and enjoyed tremendous success. In the midd-
90s, the platform was being used in more than a dozen countries,
including 15,000 elementary and middle schools in the United
States [34]. This success inspired further work on the first
generation of computationally enhanced construction kits. The
earliest extensions of the LEGO/Logo platform addressed a major
limitation: wires. A new version, the “Logo Brick,” used a 6502
processor, the same that powered Apple computers. Another
innovation, the “Braitenberg Brick” system, developed primarily
by Fred Martin, represented a serious conceptual modification.
Martin’s system included LEGO bricks with embedded electronics,
instead of relying on specially designed electronic bricks used in
conjunction with traditional LEGO bricks. The resultant system
consisted of a set of “low-level logic bricks” [33] that children
could wire together to create different behaviors. The limitation
here was that each brick had a dedicated function, so many of them
were needed for more complex functions.
Another design, the Programmable Brick, overcame this limitation
by embedding a fully programmable computer into a LEGO brick
[33]. This design also took advantage of key technological
advances; for example, it had faster processing power, more
memory, and a variety of input-output possibilities. It also
supported infrared communications, had an LCD display, and
included buttons for basic operations such as selecting and running
programs. These features would enable interactions central to the
platform’s learning goals. However, the more important story for
the Programmable Brick Project appears to lie in its position at the
convergence of two trends that were prominent during the early
1990s in research on computers and children: constructionism and
ubiquitous computing. This convergence would have some key
design implications. It is important to note that the dominant
paradigm in computing up until that time was that “computing”
takes places in front of a computer. However, the goal of ubiquitous
computing was to spread computation throughout environments
and to embed it in all types of objects and artifacts. The
Programmable Brick extended the idea of distributing
computational power but, for the first time, aimed the work
explicitly at children, not at adults as was the case with most efforts
at the time.

174

Full Papers IDC 2013, New York, NY, USA

The Programmable Brick differed from other ubiquitous computing
efforts in two additional respects. First, it gave users the power to
“create and control” [33]. At that time, most ubiquitous computing
activities simply reinforced the separation between designer and
user. Designers created the devices, and users interacted with them.
Because each Brick was fully programmable, it gave more control
to users; they were now able to create their own devices and
activities as well as to modify the device’s behavior depending on
its intended use. The system went beyond a simple transfer of
digital information to the user through physical devices; it
connected physical to computational objects through the
production of the first physical computing artifacts, enabling them
to sense and control objects around them.
The Programmable Brick was designed with several overarching
goals. It supported multiple activities, input/output modalities, and
processes (parallel execution in addition to sequential). Studies
with children at the time revealed three broad categories of
application; children could use the Programmable Brick to make
their environments come alive, to program autonomous creatures,
and to conduct new types of scientific experiments [33]. The
Programmable Brick was not just a thing that thought; it actually
acted as a “thing to think with,” thereby reinforcing its
constructionist foundation.
This historical account is important for three main reasons. First, it
shows the intellectual roots of the first generation of devices. These
designers were deeply embedded in a constructivist/constructionist
culture, so their main motivation was to give powerful expressive
tools to children to see how they would use them. In the best
tradition of constructivism and developmental psychology, these
scholars were not interested in turning children into engineering
prodigies or in increasing enrollment in engineering schools.
Rather, they were interested in seeing how these new tools would
change how children expressed their ideas [9].

3. The Second Generation: the Crickets and
key extensions of LEGO/Logo and
Programmable Bricks
The work that took place in the 1980s and early 1990s set the stage
for the flurry of “things to think with” developed in the latter half
of the 1990s. Many of these products were updates and extensions
of earlier models. For example, LEGO Mindstorms (Figure 2) was
introduced in 1998 with improvements that made it well suited for
those who wanted to build mobile robots, although not, at that time,
for those who wished to create artistic objects involving light,
sound, and music.

Figure 2. LEGO RCX Brick

The team also worked on other devices that allowed children to
engage in new ways of thinking. More specifically, they designed
a new class of toys that would “expand the range of concepts kids
[could] explore through direct manipulation” [32]. By embedding
computation into traditional toys like blocks, beads, balls, and
badges, they attempted to leverage children’s familiarity with those
toys to introduce a new capability that would expose them to new
ideas. Unlike the earlier LEGO/Logo implementation, these toys
were autonomous. Manipulatives were not at the time a novel idea,
but this new class of toys did allow children to explore important
concepts such as dynamic systems [32].

Figure 3. The MIT Cricket
The Cricket platform (Figure 3), a variation of the programmable
brick, emerged in the late 1990s; it was a general purpose,
handheld, low-cost, fully programmable computer designed
specifically for use in science and engineering education, and
influenced by a number of related traditions, including research on
home science, design education, microcomputer-based lab
activities, and children’s programming [31]. It had two sensors and
two output ports, and communicated with the computer through an
infrared base. All connectors were polarized, so children could not
connect them wrong. Also in the tradition of the LEGO Brick, the
Cricket had on-board motor drivers and batteries, making it an all-
in-one solution for sensing and robotics. The sensors and motors
that came with the toolkit were also carefully chosen and designed
for ease of use and compatibility, and no additional components
were necessary to connect the components. The Cricket used a
special version of the Logo language for programming.
The most important catalyst in the development of the Cricket was
the research group’s continued belief that science instruction
dominated by direct instruction and lab activities were ineffective,
and that children needed the opportunity to engage in real-world
science [31] as opposed to simple simulations. At the core of the
Cricket platform was the idea of going “beyond black boxes” and
making processes visible and manipulable [31].
Students were to use the Cricket to construct and program their own
tools for scientific investigations and engineering projects.
Notwithstanding the fact that the Cricket defined a new kind of
programmable brick, its original model had its drawbacks. First, it
lacked a built-in display. Additionally, the kit allowed students to
engage in multiple types of designs, but researchers found that
students often had difficulty managing all of the pieces. Finally,
logistical challenges existed for teachers who wanted to set up
Cricket-based activities—in the late 1990s and early 2000s,
computers in classrooms were still slow, had few ports for external
devices, and were not as ubiquitous and abundant as they are today.

175

Full Papers IDC 2013, New York, NY, USA

The idea of children doing robotics and physical computing in
schools was also very new, and there were no good formats to fit
this new type of activity into the school day. Given all of these
limitations, the research group’s initial calls for a widespread
Cricket integration into school settings eventually gave way to calls
for “systemic change in the logistical and conceptual organization
of schooling” [31]. These setbacks, more than a failure of the
platform, pointed towards the difficulties in introducing a very
different type of technology in classrooms, which were open-ended
and mobile, requiring very different types of classroom facilitation
and infrastructure.
The Cricket set the standard for a whole new generation of devices
during the following 10 years. It spurred the development of other
notable handheld microcontrollers including the Handy Board [19]
and the Tangible Computation Brick [23]. Inspired by the
Braitenberg Blocks, McNerney took the Cricket design in a new
direction by creating a tangible programming interface which
allowed children to stack bricks together in different configurations
to elicit specific behaviors. This project was the second attempt at
designing modular block systems as opposed to fully
programmable ones, but soon the typical limitations of such
modular systems became clear: the bricks only stacked in one
direction. Some argued that the stacking constraint limited
expression, and asked for branching and 2-dimensional structures
[23]. Given the limitations and the difficulties in manufacturing, the
project did not reach a large number of users, and the group decided
to go back to fully programmable systems [17]. The Tangible
Computational Bricks and the Braitenberg Blocks, however,
opened up a new realm of design, which would inspire many
researchers several years later when microcontrollers became more
capable, and sensors, actuators, and mechanical parts were much
cheaper and more reliable.
Around the early nineties, another lineage of devices appeared. The
first BASIC Stamp came out of Parallax in 1992. However,
Parallax was intended for quite a different clientele; it catered to
hobbyists and engineers, and its designers had few connections to
academic research. The BASIC Stamp was a microcontroller-based
board with sensors and outputs, using a proprietary programming
language based on BASIC. Many models were launched in the
following years, and the platform was quite successful, selling
millions of units. Until the wide popularization of Arduino-like
platforms, Parallax was the key commercial vendor of
programmable boards for hobbyists. The design choices, however,
were quite different. The language was more powerful but much
harder to learn; connecting devices to the board required external
components and soldering. The BASIC Stamp did not follow the
“Cricket” model is terms of its selective exposure—in fact, it
exposed one extra hardware layer that up to that point had been
invisible to users: the pins of the microcontroller. This was a
radically different design principle. The design of the boards, which
was based on the popular PIC microcontrollers, was quite elegant
and a great fit for the needs of the hobbyist community. But the
BASIC Stamp was not an all-in-one solution, and lacked built-in
components to drive motors and receive sensor values. It was
essentially a breakout board for the microcontroller itself, giving
users full access to its pins and functionality (I call this lineage the
“Breakout” model). Also, the platform had a closed development
network, and users could only program the hardware in the BASIC
programming language. As we will discuss later in this paper, these
design differences had profound implications on how children used
these devices.

4. Third Generation: Devices that Broaden
Participation and Access New Knowledge
Domains
Microcontroller kits designed in the early years of the new
millennium continued to build on earlier designs. However, the
literature suggests a growing focus by the research community on
designing devices that would broaden participation in computing
and allow access to new domains of knowledge. In other words,
new designs emerged addressed to better exposing new groups to
powerful experiences in computing, as well as to creating kits to
enable children to explore concepts previously considered too
advanced. Curlybot, the MetaCricket, Phidgets, and the GoGo
Board all spoke to the former concern, while the MIT Tower
focused on the latter.
Curlybot was a digital manipulative developed at the MIT Media
Lab for children ages 4 and up. Frei and his colleagues designed
Curlybot in response to several issues. At the time, many digital
manipulatives were being designed for middle and high-school
children, but not for children as young as four. Further, many of the
computational environments that had been designed for children
were limited to screen-based interactions, which restricted their
value for very young children. Also, many of the existing toys were
made to support one of two play patterns that researchers had
identified; toys appealed either to “dramatists” or to “patterners,”
not to both [8]. In order to address these issues, the team created a
digital manipulative that was programmed by example. Users
would perform actions with CurlyBot, which would be recorded
and later “played back.” This innovation made concepts in
programming and mathematics accessible to children 4 years old
and up and would later inspire the designers of other systems, such
as Topobo [8].
Another Cricket offshoot, the MetaCricket was a hardware and
software construction kit designed to make rapid prototyping of
computationally-enhanced devices easier for non-engineers. At the
time, the only alternatives were ones that required designers to have
skills in electronics, circuit design, electrical assembly, and
programming. In order to lower the barrier of entry for designers,
Martin and his colleagues extended the Cricket design [19]. They
added a collection of small bus devices that could communicate
with the core Cricket device, thereby extending its functionality.
Before the MetaCricket, users would need to create a plurality of
crickets for different purposes (display, music, etc.). Now all of the
circuitry was bundled onto the device itself and could be daisy-
chained off the bus of the class cricket. This same design idea was
later utilized for the Arduino “shields.”
The University of Calgary’s Phidgets project (Figure 4) also took
the idea of modularity seriously [10]. Phidgets were “physical
widgets” designed to make it easier for designers and programmers
to develop physical interfaces. They were not designed to be used
by children, but to be the tangible equivalent of screen widgets—
the easily reusable building blocks that software designers use to
build interfaces. Greenberg and Fitchett were motivated by a
similar problem that the BASIC Stamp sought to address. To build
product prototypes, designers and programmers had to: learn basic
electronics, microprocessor programming, and device-building;
bring in specialists; and track down devices that were hard to get.
They wanted designers to spend more time on actual physical
interface design and less on low-level electronics design, so that
their physical widgets could be inserted more readily into physical
interfaces to make prototyping easier. Their design was effective
and widely successful, and very soon it became commercially
available. In terms of design, they followed the “Cricket” model,

176

Full Papers IDC 2013, New York, NY, USA

with an extra software layer that backgrounded much of the
microcontroller’s inner workings and exposed sensors and
actuators in a much simpler way. The Phidgets were a step up in
terms of hardware usability—no soldering was necessary, and users
did not have to deal with off-the-shelf electronic components. The
boards had easy to use, polarized connectors, and included in the
kit were specially designed sensor boards, which were
automatically detected by the system. Software plugins were
developed for all the major programming languages then available,
including C/C++, Java, Python and ActionScript. However,
Phidgets had the same transparency flaws (both were not open
source) as the BASIC Stamp and had no central processing power
of their own; the hardware system had to be connected to a
computer before it could function.

Figure 4. The Phidget interface, with a force sensor attached.

Despite being marketed for older students and professionals, the
Phidgets have been used in schools as well, were popular in school
science labs and, to a lesser extent, in physical computing
workshops for children.
In 2001, a new Cricket-inspired design came about, this time
intended for learners in developing countries. According to
Sipitakiat, Blikstein, and Cavallo, microcontroller kits were simply
not accessible to much of the developing world, and even less so in
schools. Programmable bricks were expensive, hard to find, and
only well-resourced schools and organizations could afford them.
To make matters worse, some of the existing commercial kits
unnecessarily separated robotics and science into two separate
categories, each requiring different hardware components.
Consequently, schools would need to purchase separate kits in
order to do both science and robotics projects. The team wished to
develop a variation of the programmable brick that would be low
cost, open source, and easily assembled with simple tools. Their
solution, the GoGo Board (Figure 5), could be assembled on site by
the user; and they made sure that all the components would be
available in electronics stores and markets in major cities of
developing countries, including Brazil, Mexico, and Thailand. The
approach was innovative for a number of reasons. First, it made the
kit more affordable because assembly (and fixing) could be done
locally by the children themselves. Secondly, it made its consumers
into producers, and the authors observed a great sense of agency
and ownership among the children and teachers who assembled
their own robotics boards. Third, the GoGo Board’s design
included within a single platform the functions of probeware and
robotics kits. Fourth, the board was the first such project to offer
two operational modes, autonomous and tethered, extending the
functionality of programmable bricks even further. The tethered
mode supported several programming languages, including
Microworlds Logo, Java, C/C++, and NetLogo, which gave the
GoGo Board the ability to use a computer’s superior processing

power for experiments and interactive systems. For the first time,
children could make screen elements move using physical sensors,
and make actuators turn on and off as a result of computer
instruction. Another important contribution of the GoGo Board was
that it allowed for the extensive use of found and broken materials;
the hardware was designed to be tolerant to non-standard
connectors, motors, and sensors [39, 41, 42]. Finally, a crucial
innovation was to make the hardware design open-source, so
designers in different countries would be able to adapt the board to
their own needs. There were custom boards developed in Brazil
(BR-Gogo, see Figure 5, [28]), Korea, and Mexico (see the board in
Figure 5, which was entirely built with found and repurposed
electronic components by Mexican schoolchildren).

Figure 5. The GoGo Board (top), the Brazilian version of the

board (bottom left), and a version made with repurposed
electronic components by Mexican schoolchildren.

The Curlybot, MetaCricket, Phidget, and GoGo Board were all
responses to issues of accessibility and ease of use, but other
projects in those years focused on issues related to extensibility.
However, towards the middle of the decade, a different breed of
programmable bricks started to develop in research labs, this time
less concerned with issues of accessibility, but pushing the
boundaries of what was possible with physical computing. The
MIT Tower took a similar approach—modular design—in order to
extend the capabilities of construction kits.
Lyons and Mitkhak, principal architects of the MIT Tower, wanted
to create a more versatile construction kit that would enable anyone
to design regardless of background and technical proficiency.
There were already a number of rapid prototyping kits in use that
lowered the entry barrier for novices and experts alike. However,
the existing technologies all had limitations in terms of processing
power or openness of the software. The MIT Tower addressed
many of these limitations with a fully modular computational
construction kit that supported Logo and other languages, and
included standalone system components. The Tower system was
the “Cadillac” of programmable bricks at the time, and had several
add on boards that greatly expanded the capabilities of the system,
making its processing power comparable to a low-end computer.
Additionally, users could attach standard peripherals such as
keyboards and mice [15]. The Tower was a visionary design that
was ahead of its time, and it inaugurated a new type of design.

177

Full Papers IDC 2013, New York, NY, USA

Today, many computer-on-a-board designs such as the Raspberry
Pi or the BeagleBoard still try to realize the MIT Tower vision.
A late entrant in the third generation of devices was the Wiring
platform. Created at the IVREA Institute in Italy by Hernando
Barragán [1], it catered to artists and designers. It made use of the
Processing programming language, a stable and well-supported
development platform created at MIT. The Wiring platform was
very powerful, but also expensive. Barragán’s advisor, Massimo
Banzi, inspired by his work, decided to create a lower cost version,
perceiving the need for inexpensive, easy-to-use hardware kits. He
teamed up with other researchers and created the platform that
would become the industry standard: the Arduino. The Arduino
followed the breakout model of the BASIC Stamp: it exposed the
microcontroller pins to the user directly, and did not have extra
electronics for connecting motors and LEDs. Circuits had to be
built externally on breadboards, and additional components were
needed for driving motors. The Arduino introduced some key
innovations: a flexible architecture for expansions (“shields”), a
focus on open-source and distributed expertise, and a “barebones
design,” which made it low cost compared to other platforms.
Up to this point in time, there was a clear division between devices
inspired by the Lego bricks and the Cricket, which were designed
from the ground up for children, and devices designed for adults
that were being tested with children. The BASIC Stamp, the
Phidgets, Wiring, and Arduino are examples of this latter category.

5. The fourth generation: New form factors,
new architectures, and new industrial design
During the latter half of this century’s first decade, the platforms
that emerged were either key extensions of earlier iterations or
radically new designs–many of which were intended to broaden the
participation of females and younger learners.
In 2006, LEGO launched the next generation of its robot
development kit. The NXT’s brick was a departure from the
original RCX design and included a new breed of sensors and
actuators as well as updated programming software. Similarly, the
Cricket platform spawned a new generation of Cricket-based
designs, including the Handy Cricket, Handy Board BlackFin, and
PICO Cricket. Significantly, many of the designs in this period
applied some of the design principles that Resnick articulated at the
2005 IDC conference. Researchers designed devices with low
floors and high ceilings, and worked to support many styles and
many paths [35].
Fred Martin and Li Xu wanted to create an accessible and engaging
way to teach compiler fundamentals to a more diverse audience of
undergraduates, and designed the Handy Crickets with that goal in
mind. They were inexpensive, hand-held microcontrollers used in
undergraduate education, but also for grades K-12. Additionally, to
program the Handy Cricket, they developed a new programming
language called Chirp [21]. Later, they designed the HandyBoard
BlackFin, an all-in-one solution for classroom use. With the
BlackFin, Martin again pioneered a type of all-in-one computing
device that would not arrive on the market until several years later.
However, before it was released, other lower cost solutions made
the BlackFin commercially unsustainable [18].
Another evolution of the Cricket platform was PICO Cricket, which
was designed to bring together art and technology in a robotics kit.
Natalie Rusk and her colleagues at the MIT Media Lab observed
that robotics in educational settings had become increasingly
popular. However, they observed that “the way robotics activities
are introduced in these settings is unnecessarily narrow” [36]. In
most classrooms and workshops, the first activity involved building

a car. Traditional approaches like this helped promote gender
imbalance in participation rates; they noted that only 30% of FIRST
LEGO League participants were girls. The team was interested in
developing more ways to engage those students who were not
interested in traditional approaches to robotics, but who would
become “more interested when robotics activities are introduced as
a way to tell a story or in connection with other disciplines, such as
music and art” [36]. The PICO Cricket facilitated this process, by
enabling young people to create objects involving light, sound, and
music. Children could connect output devices and sensors to the
device and then program the device using a Scratch-based graphical
programming language (in addition to a text-based option). With its
cutting-edge industrial design, the PICO Cricket was probably the
apex of the “Cricket” model.
However, the stars of this generation would follow a slightly
different tradition, that of the Braitenberg Blocks and modular
systems. Topobo (Figure 6) was one design that opted for a
distributed modular system, created by Hayes Raffle and Amanda
Parkes in 2004 to model the form and motion of dynamic systems.
Raffle and Parkes took their design cues from earlier developments,
such as the programming by example technique in Curlybots [27]
and the modular design of the MIT Tower system [15]. However,
the key innovation in Topobo was the introduction of active
components with embedded kinetic memory. Active and passive
parts could be snapped together to form models of animals, regular
geometries, and abstract shapes. Children would program their
modular creations by example, and the system would record the
program and play it back for them. The children could then observe
that behavior and work to refine their understanding of systems
concepts. When the designers tested Topobo with children between
the ages of 5 and 13, they noticed that they often developed
affective relationships with their creations and that Topobo could
be used to explore kinematic concepts, such as balance, center of
mass, center of gravity, coordination, relative motion, and
relationships between local and global interactions [27].

Figure 6. The Topobo platform: an assembled artifact (left)

and the active and passive parts (right)
RoBlocks (Figure 7) was another modular system, created in 2006.
It consisted of robotic blocks and a software package that allowed
children to build simple robots easily by snapping together blocks.
Eric Schweikardt and Mark Gross at Carnegie Mellon University
noted that the existing robotics kits for children were very limited.
With the kits then available, “constructing robots that [actually]
exhibit interesting behaviors usually involves a high degree of
technical experience and skill in several domains: mechanics,
electronics, and programming” [37]. The RoBlocks platform
consisted of nineteen blocks in four categories (sensors, actuators,
logic, and utility). Computation was distributed throughout the kit’s
pieces rather than restricted to a central computer that controlled
the pieces’ functions. The blocks themselves became the tangible
programming language for robot construction. Furthermore, three
levels of software interaction helped scaffold the learning for

178

Full Papers IDC 2013, New York, NY, USA

children. Children began with the simple physical manipulation of
the actual blocks, then advanced to display and manipulation
onscreen, and finally to the custom programming of their own
creations [37, 38].

Figure 7. The RoBlocks system (later Cubelets)

Another kit that used a modular design, but made programming
more explicit, was RoboBlocks [43]. Sipitakiat and Nusen designed
a robot that could be programmed with tangible blocks, following
the Logo syntax, and targeted at elementary school learners.
Differently from Topobo and RoBlocks, the robot and the
programming blocks were separate, thus the system followed the
architecture of the original Logo turtle.
One notable kit was also responding to calls for the restructuring of
learning environments to reduce emphasis on traditionally gender-
biased fields such as robotics (and robotics competitions with their
focus on performance), and to favor many other forms of
expression. Buechley’s LilyPad Arduino (Figure 8) was a pioneer
design that, for the first time, proposed a hardware platform focused
on females and e-textiles, providing a new medium to engage a
diverse range of students in engineering and computer science. The
open-source construction kit for e-textiles was rooted in her earlier
work on craft-based electronics, which included the production of
an electronic sewing kit, quilt snaps, programmable wearable
displays, fabric printed circuit boards, electronic sequins, and
socket buttons [3, 4]. To build an e-textile, the user sews
components of the platform together with conductive thread and
programs the microcontroller the Arduino environment.

Figure 8. Lilypad Arduino kit, and Leah Buechey, showing

some of the e-textiles built with the toolkit.
In terms of design, the LilyPad borrows most of the Arduino’s
electronics and software, but with one fundamental difference.
Buechley designed the kit in such way that no external electronics
were needed, and all the parts (LEDs, sensors, motors, and battery
packs) were mounted on a printed circuit board with all the extra
components built in. This was a key usability innovation for the
Arduino platform, and it confirms one of the findings of our work;
kits designed with children’s usability in mind followed the Cricket
model, which hides some of the complexities of the microcontroller
from users.

The LilyPad Arduino was released as a commercial product in
2007, and it inspired many extensions, including the TeeBoard,
LilyPadadone, LilyPad XBee, DaisyPIC and Bling Cricket [5].
Buechley has been studying the efforts of the LilyPad Arduino
community since platform was released, and her research has
highlighted the need to develop new strategies for broadening
participation in computing. Buechley urged the design community
to shift its focus. Instead of “unlocking the clubhouse,” or trying to
make traditional computing culture accessible to women, “it may
be more constructive to try to spark new cultures, to build new
clubhouses” [5]. She concludes:

Our experiences have led us to believe that the problem
is not so much that communities are prejudiced or
exclusive but they’re limited in breadth—both
intellectually and culturally. Some of the most revealing
research in diversity and STEM has found that women
and other minorities don’t join STEM communities not
because they are intimidated or unqualified but rather
because they’re simply uninterested in these disciplines
[5].

Another example of a platform for broadening participation is the
Hummingbird kit, developed as an offshoot of the Robot Diaries
project at Carnegie Mellon University. The overarching goal of the
program was to “enable girls to engage with, change, customize, or
otherwise become fluent with the technology in their lives” [11].
They designed a program that enabled them to create tangible
devices using familiar crafting materials as a part of a story. They
piloted the project for three years and later released the
Hummingbird kit as a commercial product. One important point
about the Hummingbird kit, which mirrors the LilyPad’s design, is
that tools that were designed in close contact with children from the
onset ended up following a “Cricket” design, in which an extra
hardware layer hides a considerable part of the complexity of the
electronics.

6. Today’s Design Imperatives
In recent years, the impulse to broaden participation in computing
through computationally enhanced construction kits has gathered
strength. A focus of special attention has been the leveraging of
new materials, hardware designs, and software constructs. In each
of these areas, contemporary designers continue to ask important
research questions about computers, tangible toolkits, and children:
What does children’s programming look like, and what is it for?
How might the design community enable and support powerful
experiences in computing for a broader range of learners? Is
computing a professional skill or a general medium for personal
expression? What is the best way to integrate computational
literacy with traditional disciplines such as mathematics, the arts,
and science?
For Buechley and Eisenberg [3], the “look” of children’s program
will change drastically due to the emergence of new programming
materials, physical settings, and nontraditional display surfaces.
Today, computers and their associated sensors and actuators can be
made small enough to embed them in kids’ toys and also in
traditional materials. One of their projects aims to augment
traditional materials like paper and fabric with computational
capacity, so that children can engage in programming in more
informal, approachable, and natural ways than previously has been
possible. Their flexible pieces (processor, battery, sensors, motors,
etc.) are Arduino-compatible and can be attached to specially
treated paper to create paper-based working programs. This paper-
based toolkit makes use novel materials and accessible
computational elements to make paper programmable.

179

Full Papers IDC 2013, New York, NY, USA

In another project, Buechley and colleagues challenged the
construction kit paradigm entirely by proposing a new direction.
They noted that while construction kits facilitate the making of
technology, their modularity “constrains what we build and how we
think” [6]. They proposed a “kit-of-no-parts,” or a handcrafting
approach to learning about electronics and programming, as
opposed to a construction kit approach. “Craft,” they argued,
“allows for rich design exploration that construction kits of pre-
manufactured parts cannot offer” [6]. In their recent designs, they
propose that we should move from assembling electronics to
crafting them—more recently, they advocated the idea of the
“untoolkit” along those same lines.
Blikstein and Sipitakiat are focusing on a different dimension in
children’s programming. They investigated the ways that hardware
design choices impact usability for young audiences, especially
across social strata and cultures. Advocating that the goal of
physical computing in education is to explore powerful ideas,
instead of learning the technical details about the technology, they
argued that age-appropriate design does matter when introducing
these unfamiliar technologies to children. Commenting on the rise
of “breakout” hardware designs in education, which foreground
unnecessary aspects of circuits and robotics, they called the design
community to avoid a new ‘qwerty’ phenomenon. —The design of
physical computing technologies for children should not perpetuate
sub-optimal designs just because they are overwhelmingly popular.
Similarly to Buechey’s work on the LilyPad, they argued that the
community should reconceive these technologies using well-
known best practices from the research community.
It seems that researchers are indeed taking this route. One example
is the Makey Makey toolkit (http://www.makeymakey.com), a
modification of the Arduino platform that allows children to use
everyday objects (including fruits or any mildly conductive object)
as sensors, without breadboards or additional electronics. The
newly-released Atoms platform (http://www.atoms-express.com)
is another example of a new form factors for physical computing,
in which, again, several technical aspects of the design are hidden
from users, and children have access to a well-crafted hardware
layer that relates directly to what they can build.

7. Conclusion
This review focused on two trends. The first concerns the driving
force for the development of these technologies, and the second,
the tension between those who would develop technologies for
children and those who would have children use adults’
technologies.
From the early 1980s up to the present time, there has been a shift
from theory-driven development to technology-driven
development, and now we see signs of a comeback for research in
the design of physical computing devices. The early programmable
bricks were born out of a tight group of researchers and
developmental psychologists (Papert, Ackermann, Resnick,
Martin, Ocko) who were interested in how children would utilize
this new technology as an expressive medium. This mindset was
clearly connected to the research on computer programming and
Logo, and since the actual first turtles were robotic devices, “in the
1980s, when microcontrollers were available, it was natural for
Seymour to dream of smart bricks" [44]. In fact, there were three
main lines of research around smart bricks: (1) children’s
engagement in design and engineering; (2) examining how students
would build and program cybernetic, creature-like systems; and (3)
the sense-making processes through which children would move
forward during their construction of such systems [17].

These early stages of the research and development were heavy on
usability and cognitive/developmental research (see, for example,
Nira Grannot’s Ph.D. dissertation, advised by Edith Ackermann, an
impressive treatise on how children make sense of computational
manipulatives [9]). One consequence of these foci was what I will
call selective exposure. All exposed and hidden elements of the
design were intentional, despite the higher cost and greater
complexity of manufacturing. The design heuristic was first to
consider what should be foregrounded for children and how to
maximize the complexity of what they could build with the
package, and only then to design the technology around it,
including minute (but important) details. For example, the Lego
bricks did not have polarity (sensors and motors could be connected
in any position or direction), and the Crickets had asymmetric
connectors that were impossible to connect in the wrong way. Both
devices also contained embedded motor driver chips, so plugging
into output devices was effortless—students could plug in a motor
without any extra electronics or wires. Furthermore, this ease of use
was also included at the instructional level; the transfer of programs
to both Lego brick and Cricket systems was accomplished
wirelessly through an infrared tower, which made classroom
management much simpler (especially with the few computers then
available in most classrooms). Finally, the programming language
was also designed for usability and ease of use, as was reflected in
the removal of the overhead intrinsic to most full-blown
programming languages such as C or Java.
In 1992, when the first BASIC Stamp came out of Parallax, the
inspiration was quite different. Parallax catered to hobbyists, and
education was an afterthought. In 2001, Phidgets appeared on the
market aimed at designers, engineers, and college students, and the
Wiring platform, which came out in 2003, was yet another attempt
to make designers’ lives easier by making rapid prototyping
modular and more approachable. The Arduino board, an offshoot
of Wiring, shared those same design goals. This second lineage of
products catered to hobbyists, artists, college students, and
interaction designers. Consequently, they differed from the earlier
lineage in their design commitments and compromises. Reflecting
the spirit of the open source software movement, these designs were
intended to make electronics more accessible and to bring the
benefits of programming to the physical world; but there was no
connection with developmental research or education.
In contrast to cognitive and developmental considerations, the
driving force for the development of these hobbyist technologies
was technocentric and more closely related to the needs of
professionals and students in higher education. Primary education
and children may have been amongst the initial concerns of these
designers, but they were not their primary audience. The
consequences of the ensuing design decisions were that most of
these platforms used programming languages based on Java, C, or
BASIC. Likewise, they required soldering, resistors, and
breadboards, even for simple projects, and they were not easily
made into autonomous devices. (Most did not have built in
batteries). With these new platforms, much less attention was given
to selective exposure, i.e., to considering which aspects of the
technology should be foregrounded or backgrounded. A self-
evident example is the programming language itself (Figure 9), in
which we can observe how the complexities of the Arduino
hardware design, such as exposing microcontroller’s pins directly
to users, have important usability consequences. Not only do users
have to pre-assign particular pins to their functions (outputs or
inputs), but pins are set to “high” and “low” instead of the more
intuitive “on” and “off” in Cricket Logo. What is more, the

180

Full Papers IDC 2013, New York, NY, USA

technical terms such as “void” and “digitalWrite” make parsing the
code much harder for novices.

Figure 9. A comparison of two programs that make an LED
blink, in Arduino C and Cricket Logo.

Another important point is that the justification for the provision of
such hobbyist devices for use by children was much more basic; the
mere exposure of students to engineering was thought in itself to be
sufficient. Arguably, for engineers and hobbyists, understanding
what resistors and capacitors are and knowing how to calculate
current, resistance, and voltage, were crucial content that should be
learned in order to do robotics properly. From this perspective, it is
unproblematic to expose children to this level of detail. However, I
argue that this shift in focus impeded the goal of exposing students
to powerful ideas [25], because much more time had to be spent on
the technicalities of making things work—connecting breadboard,
motors drivers, jumper wires, and resistors, as well as
understanding the syntax of C code. These technicalities were
exactly what the previous generations of designers attempted to
hide from students, because they ended up being considerable
barriers for novices. This setback was unfortunately obfuscated by
the huge popularity of these devices, but a new generation of
designers noticed it.
This situation introduced some challenges and opportunities. One
challenge was to make BASIC Stamp/Arduino devices accessible
to children. Even though they were harder to use, a big user
community developed around them. An immense body of
educational materials, tutorials, and curricula were soon developed
for the BASIC Stamp and for the Arduino board and its derivatives.
Another upside was that these devices became very robust: they had
to run on all platforms, and were designed to be open source from
the ground up. Not only did this generate an unprecedented amount
of collective expertise, it also brought commercial vendors into the
fold, ensuring the wide availability of these devices.
As this review has shown, today’s microcontroller designs for
children are again being informed by research developments
stretching back to the early 1980s. In surveying the literature, one
notices a deep commitment to the constructionist ideas articulated
by Papert and his colleagues. The interlude of the Arduino
popularity surge, while problematic from a design standpoint, was
perhaps a necessary step for physical computing for children to
grow out of its roots and its several design experiments and reach
out to the world. It appears that designers are now realizing that the
work is far from done, and there are multiple opportunities to remix
and reconceive the Cricket, the Braitenberg Blocks, and the
Arduino technologies to create brand new ways to engage children.
Fortunately, there still appears to be a deep commitment to

broadening participation in the field of computing, supporting
many paths and many styles, designing devices that can be
integrated easily into schools, and exploring new materials and
media. The ethos of physical computing seems have shifted back
from catering to a minority of hacker kids to offering opportunities
for all children to make these devices, hopefully, the gears of their
childhood.

8. ACKNOWLEDGEMENTS
Thanks to Mo Akade for her extensive help on the research and
literature review; Arnan Sipitakiat and John Paulin for comments
and suggestions on drafts; and the anonymous reviewers for their
helpful feedback. This material is based upon work supported by
the National Science Foundation under the CAREER Award
#1055130 and the DRK-12 Award #1020101, and by the Lemann
Foundation. Opinions and conclusions expressed in this material
are those of the authors and do not reflect the views of the NSF.

9. REFERENCES
[1] Barragán, H. (2004). Wiring: Prototyping physical

interaction design. Interaction Design Institute, Ivrea, Italy.
[2] Buechley, L. 2008. The Lilypad Arduino: toward wearable

engineering for everyone. In Proc. Pervasive Computing,
IEEE, pp. 12-15.

[3] Buechley, L. and Eisenberg, M. 2007. Fabric PCBs,
electronic sequins, and socket buttons: techniques for e-
textile craft. Journal of Personal and Ubiquitous Computing.
Buechley, L. and Eisenberg, M. 2009. Children’s
programming reconsidered: settings, stuff, and surfaces. In
Proceedings of IDC ’09. Como, Italy.

[4] Buechley, L., Elumeze, N., and Eisenberg, M. 2006.
Electronic/computational textiles and children’s crafts. In
Proceedings Interactive Design and Children ’06, Tampere,
Finland, pp. 49-56.

[5] Buechley, L., and Hill, B. 2010. LilyPad in the wild: how
hardware’s long tail is supporting new engineering and
design communities. In Proceedings DIS ’10, Aarhus,
Denmark, pp. 199-20.

[6] Buechley, L., Perner-Wilson, H., and Satomi, M. 2011.
Handcrafting textile interfaces from a kit-of-no-parts. In
Proceedings of TEI ’11. Funchal, Portugal.

[7] Eisenberg, M., Eisenberg, A., Gross, M.,
Kaowthumrong, K., Lee, N., Lovett, W. 2002.
Computationally-enhanced construction kits for children:
prototypes and principles. In Proceedings of the Fifth
International Conference of the Learning Sciences, 23-26.

[8] Frei, P., Su, V., Mikhak, B., and Ishii, H. 2000. Curlybot:
designing a new class of computational toys. Proceedings of
CHI 2000. ACM Press.

[9] Granott, N. 1991. "Microdevelopment of co-construction of
knowledge during problem solving : puzzled minds, weird
creatures, and wuggles", PhD. Dissertation, Massachusetts
Institute of Technology. Cambridge.
http://dspace.mit.edu/handle/1721.1/29069.

[10] Greenberg, S., and Fitchett, C. 2001. Phidgets: easy
development of physical interfaces through physical widgets.
Proceedings of the 14th Annual ACM Symposium on User
Interface Software and Technology, Orlando, Florida.

[11] Hamner, E., Lauwers, T., and Bernstein, D. 2010. The
debugging task: evaluating a robotics design workshop.

Arduino C Cricket Logo

181

Full Papers IDC 2013, New York, NY, USA

Association for the Advancement of Artificial Intelligence.
pp. 20-25.

[12] Hamner, E., Lauwers, T., Bernstein, B., Nourbakhsh, I., and
DiSalvo, D. 2008. Robot diaries: broadening participation in
the computer science pipeline through social technical
exploration. Proceedings of the AAAI Spring Symposium on
Using AI to Motivate Greater Participation in Computer
Science. Palo Alto, California, United States. pp.38-43.

[13] Harel, I. and S. Papert, Constructionism. 1991, Norwood,
N.J.: Ablex Pub. Corp.

[14] Hogg, D., Martin, T., Resnick, M.1991. Braitenberg
Creatures. 1991. Epistemology and Learning Memo 13, MIT
Media Lab.

[15] Lyon, C. 2003. Encouraging innovation by engineering the
learning curve. Master’s Thesis, Massachusetts Institute of
Technology. Cambridge.

[16] Martin, F. 1988. Children, cybernetics, and programmable
turtles. Master’s thesis. Massachusetts Institute of
Technology. Cambridge.

[17] Martin, F. 2013. Personal communication.
[18] Martin, F. and Chanler, A. 2007. Introducing the blackfin

handy board. American Association for Artificial
Intelligence.

[19] Martin, F., Mikhak, B., and Silverman, B. 2000.
MetaCricket: a designer’s kit for making computational
devices. IBM Systems Journal. vol. 39, no. 3-4, pp. 795-815.

[20] Martin, F., and Pantazopoulos, G. 2004. Designing the next-
generation handy board. Proceedings of Spring 2004 AAAI.

[21] Martin, F., and Xu, L. 2006. Chirp on crickets: teaching
compilers using an embedded robot controller. In
Proceedings of SIGCSE ’06, Houston, Texas, USA. pp.82-
86.

[22] Moriwaki, K.. Brucker-Cohen, J.2006. Lessons from the
scrapyard: creative uses of found materials within a
workshop setting. AI & Society. vol 20, no.4, pp.506-525.

[23] McNerney, T. 2000. Tangible computation bricks: building-
blocks for physical microworlds. Proceedings of CHI 2011.

[24] Ngai, G., Chan, S., Cheung, J., and Lau, W. 2009. The
TeeBoard: an education-friendly construction platform for e-
textiles and wearable computing. In Proceedings of CHI, pp.
249-258.

[25] Papert, S., Mindstorms: children, computers, and powerful
ideas. 1980, New York: Basic Books. 230.

[26] Perner-Wilson, H., Buechley, L., and Satomi, M. 2010.
Handcrafting textile interfaces from a kit-of-no-parts.
In Proceedings of the fifth international conference on
Tangible, embedded, and embodied interaction (TEI '11).
ACM, New York, NY, USA, 61-68.

[27] Raffle, H., Parkes, A., and Ishii, H. 2004. Topobo: a
constructive assembly system with kinetic memory. In
Human Factors in Computing (CHI) ’04, ACM.

[28] Ramos, J. J., Azevedo, H., Vilhete, V. A. J., Noves, O.,
Figueiredo, D., Tanure, L., & Holanda, F. (2007). Iniciativa
Para Robótica Pedagógica Aberta e de Baixo Custo para
Inclusão Social e Digital no Brasil. Anais do VIII Simtpósio
Brasileiro de Automação Inteligente (SBAI 2007),
Florianópolis, SC

[29] Resnick, M. 2005. Some reflections on designing
construction kits for kids. In Proceedings of Interactive
Design and Children, pp. 117-122.

[30] Resnick . M. 2012. Reviving Papert’s dream. Educational
technology: the magazine for managers of change in
education. Vol. 52, no.4. pp 42-46.

[31] Resnick, M., Berg, R., Eisenberg, M. 2000. Beyond black
boxes: bringing transparency and aesthetics back to scientific
investigation. Journal of the Learning Sciences, vol. 9, no. 1,
pp. 7-30.

[32] Resnick, M., Martin, F., Berg, R., Borovy, R., Colella, V.,
Kramer, K., and Silverman, B. 1998. Digital manipulatives:
new toys to think with. Proceedings of CHI ’98 (Los
Angeles, April 1998), ACM Press, 281-287.

[33] Resnick, M., Martin, F., Sargent, R. and Silverman, B. Berg,
R., Eisenberg, M. Turkle, S., and Martin, F. 1996.
Programmable bricks: toys to think with. IBM Systems
Journal, vol. 35, no. 3-4, pp. 443-452.

[34] Resnick, M., and Ocko, S. 1991. LEGO/Logo: learning
through and about design. Constructionism, edited by I.
Harel & S. Papert. Norwood, NJ: Ablex Publishing.

[35] Resnick, M and Silverman, B.. 2005. Some reflections on
designing construction kits for kids. In Proceedings of the
2005 conference on Interaction design and children (IDC
'05). ACM, New York, NY, USA, 117-122.

[36] Rusk, N., Resnick M., Berg R., and M. Pezalla-Granlund.
2008. New pathways into robotics: strategies for broadening
participation. Journal of Science Education and Technology.
Vol. 17, no. 1, pp.59-69.

[37] Schweikardt, E., and Gross, M. 2006. roBlocks: a robotic
construction kit for mathematics and science. In Proceedings
of ICMI ’06, Banff, Alberta, Canada.

[38] Schweikardt, E., and Gross, M. 2007. A brief survey of
distributed computational toys. The First IEEE Intl
Workshop on Digital Game and Intelligent Toy Enhanced
Learning (DIGITEL ’07), pp. 57-64.

[39] Sipitakiat, A., and Blikstein, P. 2010. Think globally, build
locally: a technological platform for low-cost, open-source,
locally-assembled programmable bricks for education.
Proceedings of TEI 2010, Boston, Massachusetts, USA, pp.
231-232.

[40] Sipitakiat, A ., and Blikstein, P. 2011. QWERTY and the art
of designing microcontrollers for children. In Proceedings of
IDC ’11. Ann Arbor, USA, pp. 234-237.

[41] Sipitakiat, A., Blikstein, P., and Cavallo, D. 2002. The GoGo
Board: Moving towards highly available computational tools
in learning environments. Interactive Computer Aided
Learning International Conference, Villach, Austria.

[42] Sipitakiat, A., Blikstein, P., and Cavallo, D. 2004. The GoGo
Board: Augmenting Programmable Bricks for Economically
Challenged Audiences. Proceedings of ICLS 2004, USA, pp.
481-488.

[43] Sipitakiat, A., and Nusen, N. 2012. Robo-Blocks: designing
debugging abilities in a tangible programming system for
early primary school children. Proceedings of IDC ’12, pp.
98-105.

[44] Tinker, B. 2013. Personal communication.

182

Full Papers IDC 2013, New York, NY, USA

View publication stats

