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ABSTRACT 
Microcontroller-based toolkits and physical computing devices 
have been used in educational settings for many years for robotics, 
environmental sensing, scientific experimentation, and interactive 
art. Based on a historical analysis of the development of these 
devices, this study examines the design principles underlying the 
several available platforms for physical computing and presents a 
framework to analyze various platforms and their use in education. 
Given the now widespread use of these devices among children and 
their long history in the field, a historical review and analysis of 
this technology would be useful for interaction designers. 

Categories and Subject Descriptors 
K.3.1 [Computers and Education]: Computers Uses in Education 

General Terms 
Design, Human Factors. 

Keywords 
Education, interaction design, physical computing, robotics, 
constructionism. 

1. INTRODUCTION 
The presence of several types of physical computing and robotics 
devices in educational settings is attributable to the many research 
and design initiatives of the past thirty years. However, although 
the design of such devices has evolved significantly and their 
popularity has grown significantly, there is little research that 
examines this technology from a usability standpoint or that takes 
into account the history of the development of these platforms and 
the theoretical underpinning that guided their design. This study 
initiates a discussion on the design of physical computing platforms 
for children, which is particularly important for the community of 
researchers in interaction design for children, given the prevalence 
of these devices in formal and informal education. 
Since the late 1960s, researchers have shown that not all 
programming languages are created equal [25] Logo has had a 
significant impact in K-12 education because it was relatively easy 
for the average child to learn and use, and it was created according 
to carefully-crafted, theory-inspired design principles. Based on 
these design principles, Papert and collaborators [25, 34] made a 
strong case for why the BASIC programming language—then the 
de facto standard in personal computers—was not a good design, 

and why there was a need for special languages for children. They 
argued that media matters; in other words, the particular properties 
of the constructive building blocks offered to children limit or 
enhance what they can build, create, and learn. In particular, they 
made an important distinction between understanding the inner 
workings of a technology and the content that we want children to 
learn through the use of that technology. For example, Papert was 
interested in Logo as a way for children to learn powerful ideas at 
work in mathematics and computer science (i.e., differential 
geometry, recursion, etc.) and not how the computer’s memory was 
being managed by the operating system, or how the transistors were 
wired inside the microprocessor. The histories of Logo and, more 
recently, the Scratch programming environment show how such 
design principles are crucial for a powerful and sustained 
engagement by children with technological tools for learning that 
continues beyond the novelty effect. 
The development of programming languages for children soon 
inspired the creation of programmable tangibles that would bring 
programming to the physical world. These developments have 
occurred in four waves or generations. The first generation of 
tangible physical computing devices emerged in the 1980s and 
early 1990s with the development of the LEGO/Logo platform and 
the many generations of “programmable bricks” by researchers at 
the MIT Media Lab. The second generation of devices was 
developed in the late 1990s and extended the capabilities of these 
early platforms by including new types of sensors, actuators, and 
ways to interact with computers, as well as programmable boards 
targeted to hobbyists and interaction designers. The third 
generation of the devices was developed in the early years of the 
21st century. This third wave sought not simply to extend the 
capabilities of earlier platforms, but additionally placed a particular 
emphasis on creating devices that would broaden participation in 
computing and allow users to access new domains of knowledge. 
Platforms developed during this period were specifically designed 
to target new classes of users, such as very young children, non-
technical designers, and children in the developing world. Other 
platforms used a modular approach to design as a way to open up 
possibilities for exploring complex concepts in mathematics and 
science. 
The latter half of the first decade of the current millennium saw a 
fourth generation of devices which brought new form factors, new 
architectures, and new industrial design, embedding computational 
capacity at the level of the components, enhancing the capabilities 
of older platforms and further broadening the reach of physical 
computing to new audiences. 
A parallel, non-chronological categorization refers to design 
commitments and principles. Here, I employ an analytical construct 
that I call “selective exposure.” Depending on their theoretical or 
pedagogical commitments, designers select aspects of the 
technology they either want exposed to users or hidden from them. 
Three main categories set apart the platforms produced over the last 
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30 years. The first category has as its most popular device the Lego 
Mindstorms brick, and was heavily inspired by the design of the 
Cricket (thus “the Cricket model”). These devices kept most of the 
inner working of microcontrollers hidden from users, and exposed 
only their functionality (i.e., receive sensor values, and control 
devices). The second category is comprised of devices that exposed 
most of the specificities of the underlying electronics, and were 
mostly based on the idea of a barebones “breakout board” for 
microcontrollers (thus the “breakout model”). The BASIC Stamp, 
Wiring, and the Arduino board are popular representatives of this 
category. Finally, the third category is composed of devices that did 
not need a computer to be programmed, and took the idea of 
selective exposure even further—they enabled interaction at a 
different level of abstraction, which broke the traditional paradigm 
of programmable bricks. Topobo, Braitenberg Blocks, and 
Cubelets—all programmable without computers—are among the 
main devices that fall into that category. 
In this study, I will first describe the four chronological waves of 
devices, comment on their design principles and forms of 
interaction, and, lastly, reflect upon the future of such devices, and 
how they might move forward a progressive agenda in education.  

2. The First Generation: LEGO/Logo, 
Braitenberg Bricks, and Programmable 
Bricks 
Mitchel Resnick, Fred Martin and Stephen Ocko’s pioneering work 
on LEGO/Logo began in the 1980s at the MIT Media Lab. 
LEGO/Logo (see Figure 1) was a computer-based learning 
platform that combined LEGO construction with the Logo 
programming language. Children built machines out of traditional 
LEGO pieces as well as new bricks designed specifically for the 
Logo platform, which included gears, motors, and sensors. They 
could then program their constructions. Much of this work was also 
inspired by Martin’s work with robotics competitions at MIT, 
which pioneered these types of competitions in engineering schools 
[16]. At the time, LEGO/Logo represented a return to Logo’s roots. 
Logo was used originally to program a robotic turtle, but the second 
generation of Logo environments took advantage of the advent of 
personal computing and shifted to screen turtles from the previous 
mechanical version. Even so, LEGO/Logo brought the turtle back 
off the screen [34]: the researchers’ characterization of 
LEGO/Logo as a “throwback” [33] was an apt one. 

 
Figure 1. The first MIT Programmable Brick 
However, there were important differences between the two 
platforms. With LEGO/Logo, children were not given ready-made 
objects like turtles; they had to create their own objects using the 
LEGO bricks, and were then able to use the Logo language to 
control those creations. The team attributed the platform’s success 
to the fact that it put children in control, offered multiple paths to 

learning, and encouraged the building of a sense of community 
when deployed in workshops. However, there were still some 
important limitations, including the fact that LEGO/Logo creations 
had to be tethered to personal computers in order for them to work. 
This limitation was a considerable one, especially when children 
wanted to create mobile creatures. 
Limitations aside, the platform enabled children to learn powerful 
ideas through design and about design [33], which Resnick’s team 
believed to be missing from science education in schools. Even 
though they took for granted that the traditional “instructivist” 
approach was flawed, they criticized the existing hands-on 
activities in schools because children were still compelled to work 
on someone else’s experiments. LEGO/Logo represented a new 
approach rooted in Papert’s constructionist theories, bringing 
design and invention activities to the classroom, because children 
learn best when they were “actively involved in creating and 
constructing meaningful products” [34]. In the process, students 
would learn about mathematical and scientific ideas and about the 
design process itself—an idea which, incidentally, came back to 
popularity with the “Maker” movement. However, the ideas behind 
the Maker movement have been incorporated into constructionist 
theories and implementations for at least 20 years. 
LEGO/Logo was later released as a commercial product through 
the LEGO Group and enjoyed tremendous success. In the midd-
90s, the platform was being used in more than a dozen countries, 
including 15,000 elementary and middle schools in the United 
States [34]. This success inspired further work on the first 
generation of computationally enhanced construction kits. The 
earliest extensions of the LEGO/Logo platform addressed a major 
limitation: wires. A new version, the “Logo Brick,” used a 6502 
processor, the same that powered Apple computers. Another 
innovation, the “Braitenberg Brick” system, developed primarily 
by Fred Martin, represented a serious conceptual modification. 
Martin’s system included LEGO bricks with embedded electronics, 
instead of relying on specially designed electronic bricks used in 
conjunction with traditional LEGO bricks. The resultant system 
consisted of a set of “low-level logic bricks” [33] that children 
could wire together to create different behaviors. The limitation 
here was that each brick had a dedicated function, so many of them 
were needed for more complex functions. 
Another design, the Programmable Brick, overcame this limitation 
by embedding a fully programmable computer into a LEGO brick 
[33]. This design also took advantage of key technological 
advances; for example, it had faster processing power, more 
memory, and a variety of input-output possibilities. It also 
supported infrared communications, had an LCD display, and 
included buttons for basic operations such as selecting and running 
programs. These features would enable interactions central to the 
platform’s learning goals. However, the more important story for 
the Programmable Brick Project appears to lie in its position at the 
convergence of two trends that were prominent during the early 
1990s in research on computers and children: constructionism and 
ubiquitous computing. This convergence would have some key 
design implications. It is important to note that the dominant 
paradigm in computing up until that time was that “computing” 
takes places in front of a computer. However, the goal of ubiquitous 
computing was to spread computation throughout environments 
and to embed it in all types of objects and artifacts. The 
Programmable Brick extended the idea of distributing 
computational power but, for the first time, aimed the work 
explicitly at children, not at adults as was the case with most efforts 
at the time. 
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The Programmable Brick differed from other ubiquitous computing 
efforts in two additional respects. First, it gave users the power to 
“create and control” [33]. At that time, most ubiquitous computing 
activities simply reinforced the separation between designer and 
user. Designers created the devices, and users interacted with them. 
Because each Brick was fully programmable, it gave more control 
to users; they were now able to create their own devices and 
activities as well as to modify the device’s behavior depending on 
its intended use. The system went beyond a simple transfer of 
digital information to the user through physical devices; it 
connected physical to computational objects through the 
production of the first physical computing artifacts, enabling them 
to sense and control objects around them.  
The Programmable Brick was designed with several overarching 
goals. It supported multiple activities, input/output modalities, and 
processes (parallel execution in addition to sequential). Studies 
with children at the time revealed three broad categories of 
application; children could use the Programmable Brick to make 
their environments come alive, to program autonomous creatures, 
and to conduct new types of scientific experiments [33]. The 
Programmable Brick was not just a thing that thought; it actually 
acted as a “thing to think with,” thereby reinforcing its 
constructionist foundation. 
This historical account is important for three main reasons. First, it 
shows the intellectual roots of the first generation of devices. These 
designers were deeply embedded in a constructivist/constructionist 
culture, so their main motivation was to give powerful expressive 
tools to children to see how they would use them. In the best 
tradition of constructivism and developmental psychology, these 
scholars were not interested in turning children into engineering 
prodigies or in increasing enrollment in engineering schools. 
Rather, they were interested in seeing how these new tools would 
change how children expressed their ideas [9].   

3. The Second Generation: the Crickets and 
key extensions of LEGO/Logo and 
Programmable Bricks 
The work that took place in the 1980s and early 1990s set the stage 
for the flurry of “things to think with” developed in the latter half 
of the 1990s. Many of these products were updates and extensions 
of earlier models. For example, LEGO Mindstorms (Figure 2) was 
introduced in 1998 with improvements that made it well suited for 
those who wanted to build mobile robots, although not, at that time, 
for those who wished to create artistic objects involving light, 
sound, and music. 

 
Figure 2. LEGO RCX Brick 

The team also worked on other devices that allowed children to 
engage in new ways of thinking. More specifically, they designed 
a new class of toys that would “expand the range of concepts kids 
[could] explore through direct manipulation” [32]. By embedding 
computation into traditional toys like blocks, beads, balls, and 
badges, they attempted to leverage children’s familiarity with those 
toys to introduce a new capability that would expose them to new 
ideas. Unlike the earlier LEGO/Logo implementation, these toys 
were autonomous. Manipulatives were not at the time a novel idea, 
but this new class of toys did allow children to explore important 
concepts such as dynamic systems [32]. 

 
Figure 3. The MIT Cricket 
The Cricket platform (Figure 3), a variation of the programmable 
brick, emerged in the late 1990s; it was a general purpose, 
handheld, low-cost, fully programmable computer designed 
specifically for use in science and engineering education, and 
influenced by a number of related traditions, including research on 
home science, design education, microcomputer-based lab 
activities, and children’s programming [31]. It had two sensors and 
two output ports, and communicated with the computer through an 
infrared base. All connectors were polarized, so children could not 
connect them wrong. Also in the tradition of the LEGO Brick, the 
Cricket had on-board motor drivers and batteries, making it an all-
in-one solution for sensing and robotics. The sensors and motors 
that came with the toolkit were also carefully chosen and designed 
for ease of use and compatibility, and no additional components 
were necessary to connect the components. The Cricket used a 
special version of the Logo language for programming. 
The most important catalyst in the development of the Cricket was 
the research group’s continued belief that science instruction 
dominated by direct instruction and lab activities were ineffective, 
and that children needed the opportunity to engage in real-world 
science [31] as opposed to simple simulations. At the core of the 
Cricket platform was the idea of going “beyond black boxes” and 
making processes visible and manipulable [31].  
Students were to use the Cricket to construct and program their own 
tools for scientific investigations and engineering projects. 
Notwithstanding the fact that the Cricket defined a new kind of 
programmable brick, its original model had its drawbacks. First, it 
lacked a built-in display. Additionally, the kit allowed students to 
engage in multiple types of designs, but researchers found that 
students often had difficulty managing all of the pieces. Finally, 
logistical challenges existed for teachers who wanted to set up 
Cricket-based activities—in the late 1990s and early 2000s, 
computers in classrooms were still slow, had few ports for external 
devices, and were not as ubiquitous and abundant as they are today. 
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The idea of children doing robotics and physical computing in 
schools was also very new, and there were no good formats to fit 
this new type of activity into the school day. Given all of these 
limitations, the research group’s initial calls for a widespread 
Cricket integration into school settings eventually gave way to calls 
for “systemic change in the logistical and conceptual organization 
of schooling” [31]. These setbacks, more than a failure of the 
platform, pointed towards the difficulties in introducing a very 
different type of technology in classrooms, which were open-ended 
and mobile, requiring very different types of classroom facilitation 
and infrastructure.  
The Cricket set the standard for a whole new generation of devices 
during the following 10 years. It spurred the development of other 
notable handheld microcontrollers including the Handy Board [19] 
and the Tangible Computation Brick [23]. Inspired by the 
Braitenberg Blocks, McNerney took the Cricket design in a new 
direction by creating a tangible programming interface which 
allowed children to stack bricks together in different configurations 
to elicit specific behaviors. This project was the second attempt at 
designing modular block systems as opposed to fully 
programmable ones, but soon the typical limitations of such 
modular systems became clear: the bricks only stacked in one 
direction. Some argued that the stacking constraint limited 
expression, and asked for branching and 2-dimensional structures 
[23]. Given the limitations and the difficulties in manufacturing, the 
project did not reach a large number of users, and the group decided 
to go back to fully programmable systems [17]. The Tangible 
Computational Bricks and the Braitenberg Blocks, however, 
opened up a new realm of design, which would inspire many 
researchers several years later when microcontrollers became more 
capable, and sensors, actuators, and mechanical parts were much 
cheaper and more reliable. 
Around the early nineties, another lineage of devices appeared. The 
first BASIC Stamp came out of Parallax in 1992. However, 
Parallax was intended for quite a different clientele; it catered to 
hobbyists and engineers, and its designers had few connections to 
academic research. The BASIC Stamp was a microcontroller-based 
board with sensors and outputs, using a proprietary programming 
language based on BASIC. Many models were launched in the 
following years, and the platform was quite successful, selling 
millions of units. Until the wide popularization of Arduino-like 
platforms, Parallax was the key commercial vendor of 
programmable boards for hobbyists. The design choices, however, 
were quite different. The language was more powerful but much 
harder to learn; connecting devices to the board required external 
components and soldering. The BASIC Stamp did not follow the 
“Cricket” model is terms of its selective exposure—in fact, it 
exposed one extra hardware layer that up to that point had been 
invisible to users: the pins of the microcontroller. This was a 
radically different design principle. The design of the boards, which 
was based on the popular PIC microcontrollers, was quite elegant 
and a great fit for the needs of the hobbyist community. But the 
BASIC Stamp was not an all-in-one solution, and lacked built-in 
components to drive motors and receive sensor values. It was 
essentially a breakout board for the microcontroller itself, giving 
users full access to its pins and functionality (I call this lineage the 
“Breakout” model). Also, the platform had a closed development 
network, and users could only program the hardware in the BASIC 
programming language. As we will discuss later in this paper, these 
design differences had profound implications on how children used 
these devices.  

4. Third Generation: Devices that Broaden 
Participation and Access New Knowledge 
Domains 
Microcontroller kits designed in the early years of the new 
millennium continued to build on earlier designs. However, the 
literature suggests a growing focus by the research community on 
designing devices that would broaden participation in computing 
and allow access to new domains of knowledge. In other words, 
new designs emerged addressed to better exposing new groups to 
powerful experiences in computing, as well as to creating kits to 
enable children to explore concepts previously considered too 
advanced. Curlybot, the MetaCricket, Phidgets, and the GoGo 
Board all spoke to the former concern, while the MIT Tower 
focused on the latter.  
Curlybot was a digital manipulative developed at the MIT Media 
Lab for children ages 4 and up. Frei and his colleagues designed 
Curlybot in response to several issues. At the time, many digital 
manipulatives were being designed for middle and high-school 
children, but not for children as young as four. Further, many of the 
computational environments that had been designed for children 
were limited to screen-based interactions, which restricted their 
value for very young children. Also, many of the existing toys were 
made to support one of two play patterns that researchers had 
identified; toys appealed either to “dramatists” or to “patterners,” 
not to both [8]. In order to address these issues, the team created a 
digital manipulative that was programmed by example. Users 
would perform actions with CurlyBot, which would be recorded 
and later “played back.” This innovation made concepts in 
programming and mathematics accessible to children 4 years old 
and up and would later inspire the designers of other systems, such 
as Topobo [8]. 
Another Cricket offshoot, the MetaCricket was a hardware and 
software construction kit designed to make rapid prototyping of 
computationally-enhanced devices easier for non-engineers. At the 
time, the only alternatives were ones that required designers to have 
skills in electronics, circuit design, electrical assembly, and 
programming. In order to lower the barrier of entry for designers, 
Martin and his colleagues extended the Cricket design [19]. They 
added a collection of small bus devices that could communicate 
with the core Cricket device, thereby extending its functionality. 
Before the MetaCricket, users would need to create a plurality of 
crickets for different purposes (display, music, etc.). Now all of the 
circuitry was bundled onto the device itself and could be daisy-
chained off the bus of the class cricket. This same design idea was 
later utilized for the Arduino “shields.” 
The University of Calgary’s Phidgets project (Figure 4) also took 
the idea of modularity seriously [10]. Phidgets were “physical 
widgets” designed to make it easier for designers and programmers 
to develop physical interfaces. They were not designed to be used 
by children, but to be the tangible equivalent of screen widgets—
the easily reusable building blocks that software designers use to 
build interfaces. Greenberg and Fitchett were motivated by a 
similar problem that the BASIC Stamp sought to address. To build 
product prototypes, designers and programmers had to: learn basic 
electronics, microprocessor programming, and device-building; 
bring in specialists; and track down devices that were hard to get. 
They wanted designers to spend more time on actual physical 
interface design and less on low-level electronics design, so that 
their physical widgets could be inserted more readily into physical 
interfaces to make prototyping easier. Their design was effective 
and widely successful, and very soon it became commercially 
available. In terms of design, they followed the “Cricket” model, 
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with an extra software layer that backgrounded much of the 
microcontroller’s inner workings and exposed sensors and 
actuators in a much simpler way. The Phidgets were a step up in 
terms of hardware usability—no soldering was necessary, and users 
did not have to deal with off-the-shelf electronic components. The 
boards had easy to use, polarized connectors, and included in the 
kit were specially designed sensor boards, which were 
automatically detected by the system. Software plugins were 
developed for all the major programming languages then available, 
including C/C++, Java, Python and ActionScript. However, 
Phidgets had the same transparency flaws (both were not open 
source) as the BASIC Stamp and had no central processing power 
of their own; the hardware system had to be connected to a 
computer before it could function. 

 
Figure 4. The Phidget interface, with a force sensor attached. 

Despite being marketed for older students and professionals, the 
Phidgets have been used in schools as well, were popular in school 
science labs and, to a lesser extent, in physical computing 
workshops for children. 
In 2001, a new Cricket-inspired design came about, this time 
intended for learners in developing countries. According to 
Sipitakiat, Blikstein, and Cavallo, microcontroller kits were simply 
not accessible to much of the developing world, and even less so in 
schools. Programmable bricks were expensive, hard to find, and 
only well-resourced schools and organizations could afford them. 
To make matters worse, some of the existing commercial kits 
unnecessarily separated robotics and science into two separate 
categories, each requiring different hardware components. 
Consequently, schools would need to purchase separate kits in 
order to do both science and robotics projects. The team wished to 
develop a variation of the programmable brick that would be low 
cost, open source, and easily assembled with simple tools. Their 
solution, the GoGo Board (Figure 5), could be assembled on site by 
the user; and they made sure that all the components would be 
available in electronics stores and markets in major cities of 
developing countries, including Brazil, Mexico, and Thailand. The 
approach was innovative for a number of reasons. First, it made the 
kit more affordable because assembly (and fixing) could be done 
locally by the children themselves. Secondly, it made its consumers 
into producers, and the authors observed a great sense of agency 
and ownership among the children and teachers who assembled 
their own robotics boards. Third, the GoGo Board’s design 
included within a single platform the functions of probeware and 
robotics kits. Fourth, the board was the first such project to offer 
two operational modes, autonomous and tethered, extending the 
functionality of programmable bricks even further. The tethered 
mode supported several programming languages, including 
Microworlds Logo, Java, C/C++, and NetLogo, which gave the 
GoGo Board the ability to use a computer’s superior processing 

power for experiments and interactive systems. For the first time, 
children could make screen elements move using physical sensors, 
and make actuators turn on and off as a result of computer 
instruction. Another important contribution of the GoGo Board was 
that it allowed for the extensive use of found and broken materials; 
the hardware was designed to be tolerant to non-standard 
connectors, motors, and sensors [39, 41, 42]. Finally, a crucial 
innovation was to make the hardware design open-source, so 
designers in different countries would be able to adapt the board to 
their own needs. There were custom boards developed in Brazil 
(BR-Gogo, see Figure 5, [28]), Korea, and Mexico (see the board in 
Figure 5, which was entirely built with found and repurposed 
electronic components by Mexican schoolchildren). 

 

 
Figure 5. The GoGo Board (top), the Brazilian version of the 

board (bottom left), and a version made with repurposed 
electronic components by Mexican schoolchildren. 

The Curlybot, MetaCricket, Phidget, and GoGo Board were all 
responses to issues of accessibility and ease of use, but other 
projects in those years focused on issues related to extensibility. 
However, towards the middle of the decade, a different breed of 
programmable bricks started to develop in research labs, this time 
less concerned with issues of accessibility, but pushing the 
boundaries of what was possible with physical computing. The 
MIT Tower took a similar approach—modular design—in order to 
extend the capabilities of construction kits. 
Lyons and Mitkhak, principal architects of the MIT Tower, wanted 
to create a more versatile construction kit that would enable anyone 
to design regardless of background and technical proficiency. 
There were already a number of rapid prototyping kits in use that 
lowered the entry barrier for novices and experts alike. However, 
the existing technologies all had limitations in terms of processing 
power or openness of the software. The MIT Tower addressed 
many of these limitations with a fully modular computational 
construction kit that supported Logo and other languages, and 
included standalone system components. The Tower system was 
the “Cadillac” of programmable bricks at the time, and had several 
add on boards that greatly expanded the capabilities of the system, 
making its processing power comparable to a low-end computer. 
Additionally, users could attach standard peripherals such as 
keyboards and mice [15]. The Tower was a visionary design that 
was ahead of its time, and it inaugurated a new type of design. 
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Today, many computer-on-a-board designs such as the Raspberry 
Pi or the BeagleBoard still try to realize the MIT Tower vision. 
A late entrant in the third generation of devices was the Wiring 
platform. Created at the IVREA Institute in Italy by Hernando 
Barragán [1], it catered to artists and designers. It made use of the 
Processing programming language, a stable and well-supported 
development platform created at MIT. The Wiring platform was 
very powerful, but also expensive. Barragán’s advisor, Massimo 
Banzi, inspired by his work, decided to create a lower cost version, 
perceiving the need for inexpensive, easy-to-use hardware kits. He 
teamed up with other researchers and created the platform that 
would become the industry standard: the Arduino. The Arduino 
followed the breakout model of the BASIC Stamp: it exposed the 
microcontroller pins to the user directly, and did not have extra 
electronics for connecting motors and LEDs. Circuits had to be 
built externally on breadboards, and additional components were 
needed for driving motors. The Arduino introduced some key 
innovations: a flexible architecture for expansions (“shields”), a 
focus on open-source and distributed expertise, and a “barebones 
design,” which made it low cost compared to other platforms. 
Up to this point in time, there was a clear division between devices 
inspired by the Lego bricks and the Cricket, which were designed 
from the ground up for children, and devices designed for adults 
that were being tested with children. The BASIC Stamp, the 
Phidgets, Wiring, and Arduino are examples of this latter category.  

5. The fourth generation: New form factors, 
new architectures, and new industrial design 
During the latter half of this century’s first decade, the platforms 
that emerged were either key extensions of earlier iterations or 
radically new designs–many of which were intended to broaden the 
participation of females and younger learners. 
In 2006, LEGO launched the next generation of its robot 
development kit. The NXT’s brick was a departure from the 
original RCX design and included a new breed of sensors and 
actuators as well as updated programming software. Similarly, the 
Cricket platform spawned a new generation of Cricket-based 
designs, including the Handy Cricket, Handy Board BlackFin, and 
PICO Cricket. Significantly, many of the designs in this period 
applied some of the design principles that Resnick articulated at the 
2005 IDC conference. Researchers designed devices with low 
floors and high ceilings, and worked to support many styles and 
many paths [35].   
Fred Martin and Li Xu wanted to create an accessible and engaging 
way to teach compiler fundamentals to a more diverse audience of 
undergraduates, and designed the Handy Crickets with that goal in 
mind. They were inexpensive, hand-held microcontrollers used in 
undergraduate education, but also for grades K-12. Additionally, to 
program the Handy Cricket, they developed a new programming 
language called Chirp [21]. Later, they designed the HandyBoard 
BlackFin, an all-in-one solution for classroom use. With the 
BlackFin, Martin again pioneered a type of all-in-one computing 
device that would not arrive on the market until several years later. 
However, before it was released, other lower cost solutions made 
the BlackFin commercially unsustainable [18].  
Another evolution of the Cricket platform was PICO Cricket, which 
was designed to bring together art and technology in a robotics kit. 
Natalie Rusk and her colleagues at the MIT Media Lab observed 
that robotics in educational settings had become increasingly 
popular. However, they observed that “the way robotics activities 
are introduced in these settings is unnecessarily narrow” [36]. In 
most classrooms and workshops, the first activity involved building 

a car. Traditional approaches like this helped promote gender 
imbalance in participation rates; they noted that only 30% of FIRST 
LEGO League participants were girls. The team was interested in 
developing more ways to engage those students who were not 
interested in traditional approaches to robotics, but who would 
become “more interested when robotics activities are introduced as 
a way to tell a story or in connection with other disciplines, such as 
music and art” [36]. The PICO Cricket facilitated this process, by 
enabling young people to create objects involving light, sound, and 
music. Children could connect output devices and sensors to the 
device and then program the device using a Scratch-based graphical 
programming language (in addition to a text-based option). With its 
cutting-edge industrial design, the PICO Cricket was probably the 
apex of the “Cricket” model. 
However, the stars of this generation would follow a slightly 
different tradition, that of the Braitenberg Blocks and modular 
systems. Topobo (Figure 6) was one design that opted for a 
distributed modular system, created by Hayes Raffle and Amanda 
Parkes in 2004 to model the form and motion of dynamic systems. 
Raffle and Parkes took their design cues from earlier developments, 
such as the programming by example technique in Curlybots [27] 
and the modular design of the MIT Tower system [15]. However, 
the key innovation in Topobo was the introduction of active 
components with embedded kinetic memory. Active and passive 
parts could be snapped together to form models of animals, regular 
geometries, and abstract shapes. Children would program their 
modular creations by example, and the system would record the 
program and play it back for them. The children could then observe 
that behavior and work to refine their understanding of systems 
concepts. When the designers tested Topobo with children between 
the ages of 5 and 13, they noticed that they often developed 
affective relationships with their creations and that Topobo could 
be used to explore kinematic concepts, such as balance, center of 
mass, center of gravity, coordination, relative motion, and 
relationships between local and global interactions [27]. 

 
Figure 6. The Topobo platform: an assembled artifact (left) 

and the active and passive parts (right) 
RoBlocks (Figure 7) was another modular system, created in 2006. 
It consisted of robotic blocks and a software package that allowed 
children to build simple robots easily by snapping together blocks. 
Eric Schweikardt and Mark Gross at Carnegie Mellon University 
noted that the existing robotics kits for children were very limited. 
With the kits then available, “constructing robots that [actually] 
exhibit interesting behaviors usually involves a high degree of 
technical experience and skill in several domains: mechanics, 
electronics, and programming” [37]. The RoBlocks platform 
consisted of nineteen blocks in four categories (sensors, actuators, 
logic, and utility). Computation was distributed throughout the kit’s 
pieces rather than restricted to a central computer that controlled 
the pieces’ functions. The blocks themselves became the tangible 
programming language for robot construction. Furthermore, three 
levels of software interaction helped scaffold the learning for 
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children. Children began with the simple physical manipulation of 
the actual blocks, then advanced to display and manipulation 
onscreen, and finally to the custom programming of their own 
creations [37, 38].  

 
Figure 7. The RoBlocks system (later Cubelets) 

Another kit that used a modular design, but made programming 
more explicit, was RoboBlocks [43]. Sipitakiat and Nusen designed 
a robot that could be programmed with tangible blocks, following 
the Logo syntax, and targeted at elementary school learners. 
Differently from Topobo and RoBlocks, the robot and the 
programming blocks were separate, thus the system followed the 
architecture of the original Logo turtle. 
One notable kit was also responding to calls for the restructuring of 
learning environments to reduce emphasis on traditionally gender-
biased fields such as robotics (and robotics competitions with their 
focus on performance), and to favor many other forms of 
expression. Buechley’s LilyPad Arduino (Figure 8) was a pioneer 
design that, for the first time, proposed a hardware platform focused 
on females and e-textiles, providing a new medium to engage a 
diverse range of students in engineering and computer science. The 
open-source construction kit for e-textiles was rooted in her earlier 
work on craft-based electronics, which included the production of 
an electronic sewing kit, quilt snaps, programmable wearable 
displays, fabric printed circuit boards, electronic sequins, and 
socket buttons [3, 4]. To build an e-textile, the user sews 
components of the platform together with conductive thread and 
programs the microcontroller the Arduino environment. 

 
Figure 8. Lilypad Arduino kit, and Leah Buechey, showing 

some of the e-textiles built with the toolkit. 
In terms of design, the LilyPad borrows most of the Arduino’s 
electronics and software, but with one fundamental difference. 
Buechley designed the kit in such way that no external electronics 
were needed, and all the parts (LEDs, sensors, motors, and battery 
packs) were mounted on a printed circuit board with all the extra 
components built in. This was a key usability innovation for the 
Arduino platform, and it confirms one of the findings of our work; 
kits designed with children’s usability in mind followed the Cricket 
model, which hides some of the complexities of the microcontroller 
from users. 

The LilyPad Arduino was released as a commercial product in 
2007, and it inspired many extensions, including the TeeBoard, 
LilyPadadone, LilyPad XBee, DaisyPIC and Bling Cricket [5]. 
Buechley has been studying the efforts of the LilyPad Arduino 
community since platform was released, and her research has 
highlighted the need to develop new strategies for broadening 
participation in computing. Buechley urged the design community 
to shift its focus. Instead of “unlocking the clubhouse,” or trying to 
make traditional computing culture accessible to women, “it may 
be more constructive to try to spark new cultures, to build new 
clubhouses” [5]. She concludes:  

Our experiences have led us to believe that the problem 
is not so much that communities are prejudiced or 
exclusive but they’re limited in breadth—both 
intellectually and culturally. Some of the most revealing 
research in diversity and STEM has found that women 
and other minorities don’t join STEM communities not 
because they are intimidated or unqualified but rather 
because they’re simply uninterested in these disciplines 
[5]. 

Another example of a platform for broadening participation is the 
Hummingbird kit, developed as an offshoot of the Robot Diaries 
project at Carnegie Mellon University. The overarching goal of the 
program was to “enable girls to engage with, change, customize, or 
otherwise become fluent with the technology in their lives” [11]. 
They designed a program that enabled them to create tangible 
devices using familiar crafting materials as a part of a story. They 
piloted the project for three years and later released the 
Hummingbird kit as a commercial product. One important point 
about the Hummingbird kit, which mirrors the LilyPad’s design, is 
that tools that were designed in close contact with children from the 
onset ended up following a “Cricket” design, in which an extra 
hardware layer hides a considerable part of the complexity of the 
electronics. 

6. Today’s Design Imperatives 
In recent years, the impulse to broaden participation in computing 
through computationally enhanced construction kits has gathered 
strength. A focus of special attention has been the leveraging of 
new materials, hardware designs, and software constructs. In each 
of these areas, contemporary designers continue to ask important 
research questions about computers, tangible toolkits, and children: 
What does children’s programming look like, and what is it for? 
How might the design community enable and support powerful 
experiences in computing for a broader range of learners? Is 
computing a professional skill or a general medium for personal 
expression? What is the best way to integrate computational 
literacy with traditional disciplines such as mathematics, the arts, 
and science?  
For Buechley and Eisenberg [3], the “look” of children’s program 
will change drastically due to the emergence of new programming 
materials, physical settings, and nontraditional display surfaces. 
Today, computers and their associated sensors and actuators can be 
made small enough to embed them in kids’ toys and also in 
traditional materials. One of their projects aims to augment 
traditional materials like paper and fabric with computational 
capacity, so that children can engage in programming in more 
informal, approachable, and natural ways than previously has been 
possible. Their flexible pieces (processor, battery, sensors, motors, 
etc.) are Arduino-compatible and can be attached to specially 
treated paper to create paper-based working programs.  This paper-
based toolkit makes use novel materials and accessible 
computational elements to make paper programmable.  
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In another project, Buechley and colleagues challenged the 
construction kit paradigm entirely by proposing a new direction. 
They noted that while construction kits facilitate the making of 
technology, their modularity “constrains what we build and how we 
think” [6]. They proposed a “kit-of-no-parts,” or a handcrafting 
approach to learning about electronics and programming, as 
opposed to a construction kit approach. “Craft,” they argued, 
“allows for rich design exploration that construction kits of pre-
manufactured parts cannot offer” [6]. In their recent designs, they 
propose that we should move from assembling electronics to 
crafting them—more recently, they advocated the idea of the 
“untoolkit” along those same lines.  
Blikstein and Sipitakiat are focusing on a different dimension in 
children’s programming. They investigated the ways that hardware 
design choices impact usability for young audiences, especially 
across social strata and cultures. Advocating that the goal of 
physical computing in education is to explore powerful ideas, 
instead of learning the technical details about the technology, they 
argued that age-appropriate design does matter when introducing 
these unfamiliar technologies to children. Commenting on the rise 
of “breakout” hardware designs in education, which foreground 
unnecessary aspects of circuits and robotics, they called the design 
community to avoid a new ‘qwerty’ phenomenon. —The design of 
physical computing technologies for children should not perpetuate 
sub-optimal designs just because they are overwhelmingly popular. 
Similarly to Buechey’s work on the LilyPad, they argued that the 
community should reconceive these technologies using well-
known best practices from the research community. 
It seems that researchers are indeed taking this route. One example 
is the Makey Makey toolkit (http://www.makeymakey.com), a 
modification of the Arduino platform that allows children to use 
everyday objects (including fruits or any mildly conductive object) 
as sensors, without breadboards or additional electronics. The 
newly-released Atoms platform (http://www.atoms-express.com) 
is another example of a new form factors for physical computing, 
in which, again, several technical aspects of the design are hidden 
from users, and children have access to a well-crafted hardware 
layer that relates directly to what they can build. 

7. Conclusion 
This review focused on two trends. The first concerns the driving 
force for the development of these technologies, and the second, 
the tension between those who would develop technologies for 
children and those who would have children use adults’ 
technologies. 
From the early 1980s up to the present time, there has been a shift 
from theory-driven development to technology-driven 
development, and now we see signs of a comeback for research in 
the design of physical computing devices. The early programmable 
bricks were born out of a tight group of researchers and 
developmental psychologists (Papert, Ackermann, Resnick, 
Martin, Ocko) who were interested in how children would utilize 
this new technology as an expressive medium. This mindset was 
clearly connected to the research on computer programming and 
Logo, and since the actual first turtles were robotic devices, “in the 
1980s, when microcontrollers were available, it was natural for 
Seymour to dream of smart bricks" [44]. In fact, there were three 
main lines of research around smart bricks: (1) children’s 
engagement in design and engineering; (2) examining how students 
would build and program cybernetic, creature-like systems; and (3) 
the sense-making processes through which children would move 
forward during their construction of such systems [17]. 

These early stages of the research and development were heavy on 
usability and cognitive/developmental research (see, for example, 
Nira Grannot’s Ph.D. dissertation, advised by Edith Ackermann, an 
impressive treatise on how children make sense of computational 
manipulatives [9]). One consequence of these foci was what I will 
call selective exposure. All exposed and hidden elements of the 
design were intentional, despite the higher cost and greater 
complexity of manufacturing. The design heuristic was first to 
consider what should be foregrounded for children and how to 
maximize the complexity of what they could build with the 
package, and only then to design the technology around it, 
including minute (but important) details. For example, the Lego 
bricks did not have polarity (sensors and motors could be connected 
in any position or direction), and the Crickets had asymmetric 
connectors that were impossible to connect in the wrong way. Both 
devices also contained embedded motor driver chips, so plugging 
into output devices was effortless—students could plug in a motor 
without any extra electronics or wires. Furthermore, this ease of use 
was also included at the instructional level; the transfer of programs 
to both Lego brick and Cricket systems was accomplished 
wirelessly through an infrared tower, which made classroom 
management much simpler (especially with the few computers then 
available in most classrooms). Finally, the programming language 
was also designed for usability and ease of use, as was reflected in 
the removal of the overhead intrinsic to most full-blown 
programming languages such as C or Java.  
In 1992, when the first BASIC Stamp came out of Parallax, the 
inspiration was quite different. Parallax catered to hobbyists, and 
education was an afterthought. In 2001, Phidgets appeared on the 
market aimed at designers, engineers, and college students, and the 
Wiring platform, which came out in 2003, was yet another attempt 
to make designers’ lives easier by making rapid prototyping 
modular and more approachable. The Arduino board, an offshoot 
of Wiring, shared those same design goals. This second lineage of 
products catered to hobbyists, artists, college students, and 
interaction designers. Consequently, they differed from the earlier 
lineage in their design commitments and compromises. Reflecting 
the spirit of the open source software movement, these designs were 
intended to make electronics more accessible and to bring the 
benefits of programming to the physical world; but there was no 
connection with developmental research or education.  
In contrast to cognitive and developmental considerations, the 
driving force for the development of these hobbyist technologies 
was technocentric and more closely related to the needs of 
professionals and students in higher education. Primary education 
and children may have been amongst the initial concerns of these 
designers, but they were not their primary audience. The 
consequences of the ensuing design decisions were that most of 
these platforms used programming languages based on Java, C, or 
BASIC. Likewise, they required soldering, resistors, and 
breadboards, even for simple projects, and they were not easily 
made into autonomous devices. (Most did not have built in 
batteries). With these new platforms, much less attention was given 
to selective exposure, i.e., to considering which aspects of the 
technology should be foregrounded or backgrounded. A self-
evident example is the programming language itself (Figure 9), in 
which we can observe how the complexities of the Arduino 
hardware design, such as exposing microcontroller’s pins directly 
to users, have important usability consequences. Not only do users 
have to pre-assign particular pins to their functions (outputs or 
inputs), but pins are set to “high” and “low” instead of the more 
intuitive “on” and “off” in Cricket Logo. What is more, the 
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technical terms such as “void” and “digitalWrite” make parsing the 
code much harder for novices. 
 
 

Figure 9. A comparison of two programs that make an LED 
blink, in Arduino C and Cricket Logo. 

Another important point is that the justification for the provision of 
such hobbyist devices for use by children was much more basic; the 
mere exposure of students to engineering was thought in itself to be 
sufficient. Arguably, for engineers and hobbyists, understanding 
what resistors and capacitors are and knowing how to calculate 
current, resistance, and voltage, were crucial content that should be 
learned in order to do robotics properly. From this perspective, it is 
unproblematic to expose children to this level of detail. However, I 
argue that this shift in focus impeded the goal of exposing students 
to powerful ideas [25], because much more time had to be spent on 
the technicalities of making things work—connecting breadboard, 
motors drivers, jumper wires, and resistors, as well as 
understanding the syntax of C code. These technicalities were 
exactly what the previous generations of designers attempted to 
hide from students, because they ended up being considerable 
barriers for novices. This setback was unfortunately obfuscated by 
the huge popularity of these devices, but a new generation of 
designers noticed it. 
This situation introduced some challenges and opportunities. One 
challenge was to make BASIC Stamp/Arduino devices accessible 
to children. Even though they were harder to use, a big user 
community developed around them. An immense body of 
educational materials, tutorials, and curricula were soon developed 
for the BASIC Stamp and for the Arduino board and its derivatives. 
Another upside was that these devices became very robust: they had 
to run on all platforms, and were designed to be open source from 
the ground up. Not only did this generate an unprecedented amount 
of collective expertise, it also brought commercial vendors into the 
fold, ensuring the wide availability of these devices. 
As this review has shown, today’s microcontroller designs for 
children are again being informed by research developments 
stretching back to the early 1980s. In surveying the literature, one 
notices a deep commitment to the constructionist ideas articulated 
by Papert and his colleagues. The interlude of the Arduino 
popularity surge, while problematic from a design standpoint, was 
perhaps a necessary step for physical computing for children to 
grow out of its roots and its several design experiments and reach 
out to the world. It appears that designers are now realizing that the 
work is far from done, and there are multiple opportunities to remix 
and reconceive the Cricket, the Braitenberg Blocks, and the 
Arduino technologies to create brand new ways to engage children. 
Fortunately, there still appears to be a deep commitment to 

broadening participation in the field of computing, supporting 
many paths and many styles, designing devices that can be 
integrated easily into schools, and exploring new materials and 
media. The ethos of physical computing seems have shifted back 
from catering to a minority of hacker kids to offering opportunities 
for all children to make these devices, hopefully, the gears of their 
childhood. 
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